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ABSTRACT 

It is stated that, for a glass transition to exist in a reorientationally disordered crystal 
within which a large-amplitude motion is slowed down when temperature decreases, some 
“symmetry departure” must exist: the different molecular orientations will therefore be 
discernible, thus entailing a possible disorder that may cause the system to depart from 
thermodynamic equilibrium. This description has been used to explain and predict glass 
transitions in some molecular crystals. It has also suggested a two-level system model 
depending on a symmetry departure parameter. Its behaviour is described in terms of a 
population temperature 19 which can be considered as a fictive temperature according to 
Tool’s definition. This model reproduces characteristic properties of systems that vitrify, such 
as the different variations of 0 at increasing and decreasing temperatures, respectively, or the 
shapes of the thermal drift rate curves near the glass transition. It predicts that the activation 
energies for enthalpy relaxation and for the correlation times for the motion which is frozen 
at Tg should be equal: this prediction is fulfilled in all four cases for which sufficient data 
exist. Finally, the symmetry departure parameters have been calculated from experimental 
data for the same cases. 

INTRODUCTION 

In 1974, Suga and Seki extended the concept of glassy state to the 
non-equilibrium solid state in general [l]. Adiabatic calorimetry is the surest 
experimental method to characterize this state by revealing a glass transi- 
tion, an enthalpy relaxation phenomenon and the existence of a residual 
entropy at 0 K. Glassy crystals, the first example of which was recognized in 
crystalline cyclohexanol [2], are such systems. They are glasses from the 
thermodynamic point of view, but they are still crystals according to 
radiocrystallographic measurements. 

Such model glasses can be obtained by cooling reorientationally dis- 
ordered crystalline phases and combined thermodynamic, dynamic and 

* Dedicated to Professor Syfizi, Seki in honour of his contribution to Calorimetry and 
Thermal Analysis. 
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structural studies led to a coherent description of the quenching mechanism 
[3,4]. The glassy phase and its dynamically disordered mother phase corre- 
spond to the same space and time-averaged crystalline structures, with the 
same number of possible molecular orientations at each lattice site, with the 
same occupancy factors and essentially the same mean local disorder [5,6]. 
From the dynamic point of view, the glass transition is a kinetic phenome- 
non which can be observed for measuring frequencies ranging from lop3 to 
lOa Hz depending on the experimental mode of observation; it is corre- 
lated with the “freezing” of the bulkiest large-amplitude-molecular-motion 
((Y motion). In the compounds which have been studied so far (cyclohexanol 
[3,4,7], cyclooctanol [4], 1-cyanoadamantane [8,9] and 1,2-difluorotetrach- 
loroethane [4,10]), this motion is the endospherical or quasi-isotropic one. 
On the other hand, anisotropic, large amplitude motions (p motions) still 
exist within the glassy phase; they can eventually lead to secondary glass 
transitions, as it is the case in cyclohexanol [ll], when their frequencies 
reach the above characteristic frequency range. 

This is illustrated in Fig. 1. Figure la shows the variations of the 
frequencies of three large-amplitude motions as a function of temperature in 
crystalline cyclohexanol. Curve D corresponds to self-diffusion which does 
not seem to be related to any glass transition. Curve LY (illustrating the 
endospherical motion) and curve p (corresponding to an anisotropic motion, 
the nature of which is still controversial [4,7]) lead to glass transitions which 
have been observed by means of calorimetric measurements [ll]. On the 
other hand, in the case of l-cyanodamantane (Fig. lb), it cannot be 
concluded whether the p motion will lead to a glass transition near 45 K as 
it could be inferred by linearly extrapolating curve fi to the 10-3-10-5 Hz 
range. 

This problem is a general one, and the aim of the present paper is to try 
to define the conditions that a reorientational motion must fulfil to lead to a 
glass transition when its frequency reaches the above characteristic range. 
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Fig. 1. Relaxation maps for molecular solids leading to glassy crystalline states. (a) Cyclo- 
hexanol; (b) 1-cyanoadamantane. These maps have been drawn from ref. 4. 
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Phenomenological description 

We shall present a simple model which is meant to point out how the 
freezing of a large-amplitude motion can cause the system to depart from 
thermodynamic equilibrium. 

Let us assume that, at each lattice site, each molecule can occupy n 
different orientations and that each orientation corresponds to a different 
potential depth. These potential wells will be separated by energy barriers, 
the crossing of which will be ruled by energy fluctuations within the solid. 
At thermodynamic equilibrium, the populations of these different energy 
levels will comply with Boltzmann’s law. 

Starting at temperature T,, at which thermodynamic equilibrium is 
achieved, the system is cooled to T2, a temperature at which the mean 
frequency of the involved reorientational motion is less than lop5 Hz. The 
energies of the orientational states at equilibrium may be slightly modified, 
because of thermal contraction for instance, but mainly the populations of 
these states will change. In particular, the occupancy factors of the lowest 
energy states will increase at the slow pace of the effective energy fluctua- 
tions in the system. The observer will witness a long-time enthalpy relaxa- 
tion: the lower T2 is the longer this relaxation will be. 

This description illustrates the fact that, according to a formulation stated 
by Seki and co-workers [12], “the glass transition is not a phase transition. It 
is a change from a non-equilibrium to equilibrium state” (or vice versa). 
Thus, departure from thermodynamic equilibrium appears at the result of 
the convolution of the “observer’s time” and the intrinsic evolution kinetics 
of the observed system. 

Let us now consider systems in which all molecular orientational states 
have the same energies. For instance, it would be the case of a solid within 
which the molecules would undergo 2s/n reorientations around one of their 
C,, axes, that are jumps between undiscernible states. Obviously, freezing 
such a motion would entail no departure from equilibrium. As a matter of 
fact, crystalline benzene and ferrocene, within which the molecular cycles 
undergo 27r/6 or 2a/5 reorientations around C, or C, axes [13,14], respec- 
tively, exhibit no glass transition [15-171. In the case of benzene, the number 
of experimental points in the calorimetric study [15] may not be large 
enough to warrant that some small thermal step increase did not remain 
unnoticed; but in the cases of ferrocene-h,, [16] and -d,, [17], the calorimet- 
ric experimental points are so close to one another that no glass transition 
could have escaped observation. 

Therefore, it may be stated that a glass transition will appear in a 
crystalline phase within which reorientational molecular motions occur only 
if some “symmetry departure” exists: the different molecular orientations 
will therefore be descernible, thus entailing a possible disorder which will 
allow the system to depart from thermodynamic equilibrium. 
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A tentative definition may be worded as follows: a symmetry departure 
will exist if the symmetry group of the molecular orientations in the crystal 
is not a sub-group of the symmetry group of the molecule (or vice versa), or, 
if it is, when the respective symmetry axes of these two groups do not 
coincide. 

For instance, if the p motion in crystalline l-cyanoadamantane (Fig. la) 
consists of 2~/3 reorientations around the three-fold molecular axis, no 
symmetry departure is involved and no glass transition will exist. But 
dielectric measurements [18] suggest that the molecules undergo some pre- 
cessional motions around the four-fold axes of the crystalline lattice: there- 
fore, calorimetric measurements should reveal a weak secondary glass transi- 
tion near 45 IS [8]. 

Five-membered heterocyclic compounds yield other examples of glassy 
crystalline states which can be understood in terms of the above rule of 
thumb. The glass transitions which have been observed in both phase 
sequences of crystalline thiophene [19,20] are undoubtedly related to the 
presence of the sulphur atom which plays the part of a discernibility label. 
Likewise, the glassy crystalline phases which exist in thiazole, isothiazole 
and isoxazole [21,22] probably result from the freezing of in-plane reorienta- 
tional molecular motions between energetically discernible positions. 

It will be easy to find further examples to test the predictive value of the 
symmetry departure rule. We just described the case of l-cyanoadamantane. 
It can also be conjectured that the freezing of the precessional motion of the 
dipolar axes of l-fluoroadamantane molecules which was recently observed 
in phase II of this compound [23] will lead to a glass transition near 90 K. 
Furthermore, reorientational phase I of azaferrocene easily supercools; the 
variations vs. temperature of its NMR spin-lattice relaxation time Tl [24] 
are very similar to the characteristic variations of Tl for recognized glassy 
crystals [4,7]. These similarities together with some indications drawn from 
differential thermal analysis measurements [25] are clues that the discemibil- 
ity labelling by the nitrogen atom in one of the two molecular five-mem- 
bered cycles will lead to a glass transition. 

We do not know the minimum necessary symmetry departure to bring 
about an observable glass transition. For instance, it may be debated 
whether the very weak symmetry departure which exists in 
monodeuterated-benzene or -ferrocene will be sufficient to lead to what 
could be called the “minimal molecular glass” in which the departure from 
thermodynamic equilibrium would be ideally weak. At the moment, these 
borderline cases correspond to fanciful questions; nevertheless, Atake et al. 
[26] recently observed non-equilibrium crystalline phases in h,,- and d,,- 
hexamethylbenzenes within which the discernibility labelling seems to stem 
out of some dephasing in the rotational motions of the different methyl 
groups. 

It is to be noted that the two classes of orientational crystals we dis- 
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tinguished with respect to glass transitions (i.e. classes with or without 
symmetry departure) are essentially the same ones that were described as to 
what concerns the possible phase transitions towards ordered phases [27]. 
This could have been anticipated because nucleation of a new phase and 
slackening of some molecular motion to yield a glass transition are two 
kinetic mechanisms which compete with each other in many reorientational 
phases; therefore, they should correspond to some common criteria. 

We will now illustrate the above description through a simple two-level 
system in which symmetry departure corresponds to the energy splitting 
between the involved levels [28]. 

Symmetry departure: a two-level model 

Let us assume that, in a reorientational crystal, the molecules can occupy 
orientational states which correspond to two kinds of potential wells sep- 
arated by an energy equal to AE, the symmetry departure parameter. A E 
and the total number of occupied wells (that is the number of molecules N 
in the solid) do not vary with temperature. The transitions between the two 
kinds of wells are ruled by the crossing of a potential barrier the height of 
which, IV, is supposed to be temperature-independent ( W > A E). 

At thermodynamic equilibrium, the populations of the lower and higher 
levels, n’ and n”, respectively, are given by: 

n’ + .” = N 
n’ AE 
- = expkT n I, 

Let us now assume that, after an extremely rapid cooling to temperature 
T, the two-level populations have not had time to reach their equilibrium 
values. The higher level is overpopulated by n excess molecules; obviously, 
n also characterizes the underpopulation of the lower levels. The system can 
momentarily be described by an apparent population temperature tI defined 
by: 
n“.- n AE 

--=expkB n”+ n 

so that the excess population can be written as: 

(1) 

The purpose of the ensuing calculations is to describe the variations of 8, 
i.e. the variations of the orientational populations, when temperature changes 
continuously. 

At temperature T, the system will tend to reach equilibrium. A variation 
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dn of the excess population will correspond to a change de of the popula- 
tion temperature such as: 

dn = iVg 
kg2 

exp$/il + exp$)2] de 

Let the excess population decrease according to: 

d n =- df n 
7 

in which the relaxation time T is ruled by the crossing of the potential 
barrier W referred to before, so that: 

W 
r=A expE 

We get: 

AE AE 

ndt=--7N 
- exp-g 
ke2 d8 

( 

AE = 
1 + expq 

) 

hence: 

AE 
AE AE AE AE ’ +expkT de 

expm - expm = -7---+ expg AE dt 
1+ expkB 

Now, let the temperature decrease at a constant rate, u > 0, according to: 

dT 

dt=-e 

A simple way to explain what follows is to consider that, during a time d t 
at constant temperature T, 0 has undergone a spontaneous change dB which 
corresponded to a change dn of the number of orientational states in both 
levels. After dt has elapsed, temperature undergoes an instantaneous change 
equal to dT = - u dt during which no orientational transition occurs, so 
that 8 does not change. The value of d0 calculated above represents the total 
change of B for the evolution at T during dt, followed by the thermal jump 
equal to dT = -u d t. Therefore, we can report the value of dt in the 
preceeding equation. We get: 

AE 
AE AE AE AE 1 +expkT de 

exp= - expw = 073 expw AE dT 
1+ expkB 
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Fig. 2. Variation of population temperature 0 in a two-level system: temperature decreases 
first at a constant rate (curve a) and then increases at the same rate (curve b). The 
populations of the levels are ruled by the crossing of a potential barrier the height of which is 
independent of temperature. 

that we will write as: 

AE AE de 
exp k~ - exps = CJTB~ (2) 
where B is a positive quantity the variation, vs. temperature, of which is 
slower than that of 7 because AE c IV. 

During such a continuous cooling, the higher level is systematically 
overpopulated because reaching thermodynamic equilibrium is not instanta- 
neous, so that 8 is always higher than T. Therefore, the first member of eqn. 
(2) is positive, consequently dB/dT is positive. 

At high temperature, 7 is very weak and the two terms of the first 
member of eqn. (2) are almost equal. The graph representing 8(T) tends 
towards the straight line 8 = T with 8 > T. At low temperature, 7 becomes 
very large, dB/dT tends towards zero and 8(T) levels off (Fig. 2, curve a). 

The cooling is stopped at T = To where 7 is so large that no evolution of 
8 is observable. Then, the system is heated at the constant rate dT/dt = - u, 
with [I < 0. 

As the first member of eqn. (2) is initially positive (because B does not 
change at temperature To), dB/dT is negative; 8 begins to decrease (Fig. 2, 
curve b). It decreases until the first member of eqn. (2) becomes zero, that is 
when 8 = T. Then 8 will increase and will tend towards the straight line 
e = T, with e -c T. 

The above model reproduces a number of characteristic features of 
systems that vitrify. The levelling off of 8 on cooling reflects the freezing of 
the high temperature, dynamic orientational disorder. The very existence of 
a low temperature 0 limiting value does not depend on the cooling rate, it is 
a consequence of the very long relaxation times 7 attained when temperature 
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decreases. It has been checked by numerical computations that the slower 
the cooling rate the lower the 0 limiting value. A corresponding behaviour 
can experimentally be observed, for instance when measuring volume at a 
constant cooling rate in a vitrifying system; the slower the cooling rate, the 
lower the temperature at which the graph V( 7’) changes slope. 

The curves e(T) obtained on cooling and on heating at the same rate (a) 
are different. This mimics the different behaviours of vitrifying systems at 
decreasing and increasing temperature. It has also been checked that the 0 
depression on heating depends on the heating rate: the slower the heating 
rate the lower the 6’ value at 8 = T. 

It is to be noted that the population temperature B strictly conforms to 
the definition of a “fictive temperature” according to Tool [29], that is: a 
glassy state at temperature T can be characterized by a fictive temperature 8 
if, by heating the sample rapidly at temperature 0, it regains its thermody- 
namic equilibrium and, conversely, when bringing it back to temperature T, 
it regains its initial state. 

We will now examine some more specific consequences of the model. 

Applications of the symmetry departure model 

Let us first consider the spontaneous thermal evolution of the system at 
some temperature in the range within which B evolutions begin to be 
observable on heating. This will happen when the decrease of 8 can be 
observed in Fig. 2b, that is for a temperature at which 8 > T. 

In these conditions the higher orientational states are overpopulated and 
the trend towards equilibrium will result in transitions from the higher levels 
to the lower ones. Each transition will yield an energy equal to AE. If the 
system is placed in adiabatic conditions, in an adiabatic calorimeter for 
instance, the observer will witness an enthalpy relaxation with a positive 
thermal drift. 

At the temperature for which 8 = T on curve b of Fig. 2, thermodynamic 
equilibrium is achieved and no enthalpy relaxation should be observed. 

At still higher temperatures, 8 < T, the lower orientational levels are 
overpopulated and, to reach equilibrium, transitions from the lower states to 
the higher ones are necessary. Each transition corresponds to the absorption 
of an energy equal to AE, so that the net result will be an enthalpy 
relaxation with a negative thermal drift. This should happen up to a 
temperature at which r is short enough for the relaxation to become 
non-observable under usual experimental conditions. 

This behaviour can be compared to what is really observed in calorimetric 
measurements. For instance, Fig. 3 shows the variations of the spontaneous 
thermal drift near the glass transition which occurs in the metastable phase 
sequence of crystalline thiophene [19,20]. Other examples have been pub- 
lished; the shapes of the thermal drift curves may depend on the detailed 
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Fig. 3. Temperature drift rate as a function of temperature near the glass transition of the 
metastable phase sequence of crystalline thiophene. 

thermal treatments undergone by the studied samples, but the main char- 
acteristics of enthalpy relaxation we just deduced from the model are 
actually observed. 

Moreover, according to our model, the same activation energy W rules 
the reorientational motions and the enthalpy relaxation process. Therefore, 
we must try to compare the corresponding values for real systems. Obvi- 
ously, the comparison will be valid only for systems in which the freezing of 
one single motion leads to a glassy phase; furthermore, the corresponding 
characteristic time r must obey an Arrhenius law. This is the case for 
compounds in which secondary or secondary-like (as in thiophene) glass 
transitions exist. 

For such systems, Matsuo et al. [30] have described a procedure to 
analyse the enthalpy relaxation phenomenon. It uses data corresponding to 
the rising part of the positive temperature drift curve to get an Arrhenius 
plot of the enthalpy relaxation time such as the one which is represented in 
Fig. 4 and which has been derived for the glassy crystalline phase of the 
metastable phase sequence of thiophene. From this plot, an activation 

/ 

2.8 3 3,2 3,4 3.6 
hK/T 

Fig. 4. Least-squares fitted Arrhenius plot for the enthalpy relaxation times in the glassy 
crystalline phase of the metastable phase sequence of crystalline thiophene. 
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TABLE 1 

Activation enthalpies for enthalpy relaxations and the corresponding NMR correlation times, 
and symmetry departure parameters AE for compounds leading to secondary-like glass 
transitions 

Thiophene Thiophene SnC12~2H20 SnCl 2. 2D,O 
(stable sequence) (metastable sequence) 

A &ax 
(kJ mol-‘) 11 [19,20] 9.4 [19,20] 49.9 [30] 49.8 [30] 

A H,,, 7 ]321 11.4 [19] 49 [34] 49 [34] 
(kJ mol-‘) 15.5 [33] 43.9 [35] 

12.7 [19] 

AE 
(kJ mol-‘) 3 1.1 4.2 4 

enthalpy AH,,,, such as: 

AH&X 
‘= TO exp kT 

can be determined. 
It has to be compared with the activation enthalpy AH,,,, which rules the 

reorientational motion which is going to be frozen. AH,,,, can be de- 
termined through NMR measurements. 

The comparison has been possible in four cases, i.e. SnCl, - 2H,O, SnCl, 
.2D,O [30] and the two phase sequences of crystalline thiophene [19,20]. 
Table 1 shows that the agreement between AHH,,,, and AH,,,, is fair for 
thiophene and excellent for the other two compounds. These equalities (or 
near equalities) had already been noticed by Matsuo et al. [30] and Figuiere 
et al. [19]. In particular, Matsuo and Suga have written [31]: “The relaxation 
time derived from the heat evolution and absorption rates has the same 
activation energy as the correlation time from the NMR Tl measurements.. . 

The same basic mechanism is involved in the two relaxation processes 
occurring in these quite different time scales”. This requirement of the 
model seems to be fulfilled indeed. 

Now, we will try to determine values for the symmetry departure parame- 
ter AE. The more straightforward way to do it would be to try different 
values of AE in eqn. (2) to fit the experimental thermal drift curves. But this 
fitting depends on the thermal histories of the samples which are not 
accurately known. Instead we shall describe a simple way to get approximate 
values of A E by using the enthalpy relaxation phenomenon in the vicinity of 
the glass transition. 

.Only part of the total enthalpy of the system is involved in this phenom- 
enon. This part, H,, called the configuration enthalpy by Matsuo et al. [30], 
is the difference between the enthalpy H( T, t) actually measured at temper- 
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ature T and time t and the equilibrium value H( T, t = 00). According to 
Matsuo et al.‘s model, H, is given by: 

H,(T, t) = Ki. 

where 7 is the corresponding relaxation time, p is the thermal drift rate and 
C the heat capacity of the calorimeter cell with the sample inside it. 

We will use the following approximation: 

because the values of CP,m, the heat capacity of the studied sample (the 
subscript m stands for molar), are reported in publications relating to 
calorimetric work. 

In our model, H, corresponds to the enthalpy that the system would yield 
at a given temperature to achieve 8 = T, that is the enthalpy change related 
to the disappearance of all excess population n. Therefore, we get: 

where n/N, the molar fraction of excess population, is given by eqn. (1). 
This equation has been used to fit AE so that the configuration enthalpy 

derived from eqn. (4) is equal to that given by eqn. (3) and which has been 
determined thanks to experimental data. The value of 8 is only known for 
the temperature at which the thermal drift is equal to zero, where 8 = T, and 
which corresponds to a minimum value of 8 so that its variations around 
that temperature are weak. Consequently, in the four cases for which all 
data are known and which are the same ones as before, H__, was calculated 
at temperatures near these minima, the values of which were used as 
approximate values for 8. 

TABLE 2 

Thermodynamic data used to calculate the symmetry departure parameters for compounds 
leading to secondary-like glass transitions. The symbols are defined in the text. Data for 
thiophene come from ref. 20 and those for SnCl,.2H,O and SnC12.2D,0 come from ref. 30 

Thiophene Thiophene SnCl,.2H,O SnCl,.2D,O 
(stable sequence) (metastable sequence) 

T (K) 41.7 35 144.1 149.2 

@ (K) 43.9 37 155 158.4 

7 (s) 1000 5120 61000 52000 

C,,, (J K-’ mol-‘) 30.8 25.4 108.6 118.3 

f (K s-‘) 8x1O-6 4x1o-5 5x1o-6 5x1o-6 

H,_,, (J mol-‘) 0.25 5.2 33.1 30.8 



102 

The experimental data we used are reported in Table 2 and the resulting 
values of the symmetry departure parameters are reported in Table 1. 

The value of AE for the glassy phase V, (stable sequence) of thiophene is 
higher than that for phase II,, (metastable sequence). This is consistent with 
the fact that stable phases are denser than metastable ones. Therefore the 
steric hindrance should be more important in VP than in II,,, so that AHrelax 
and AE should be higher for the former phase than for the latter one, which 
is the case. 

As for SnCl, - 2H,O and its deuterated analogue, our results suggest that 
the incompletely long-range-ordered proton (or deuteron) configuration, 
which, according to Matsuo et al.‘s hypothesis [30], is frozen in the glassy 
state, is related to the existence of two non-equivalent orientations of water 
molecules. These two different orientations should correspond to a dif- 
ference of about 4 kJ mol-’ in the depths of the involved potential wells. 

CONCLUSIONS 

To explain how the freezing of large-amplitude reorientational motions 
can lead to a glassy crystalline phase, some symmetry departure in the 
original reorientational phase seems necessary. 

The existence of glass transitions in the crystalline phases of five-mem- 
bered heterocyclic compounds has been explained in terms of this concept. 
It has also been used to predict the emergence of secondary (or secondary- 
like) glass transitions in 1-cyano- and l-fluoroadamantane and in azaferro- 
cene; calorimetric studies will be necessary to test these predictions. 

This description has suggested what Kovacs would call a zeroth-order 
model, that is a two-states model in which equilibrium is attained through 
an exponential law [36], e.g. Bragg and Williams’ alloy-quenching model 
[37]. Symmetry departure is represented by the energy difference between 
the two orientational levels involved. The behaviour of the systems is 
described in terms of a population temperature 8, the definition of which 
only depends on the populations of both levels. 

The model reproduces characteristic properties of systems that vitrify, e.g. 
variations vs. temperature of 0, which differ on decreasing and increasing 
temperatures or which depends on the thermal history, or the shapes of the 
thermal drift rate curves near the glass transition Tg. It also predicts that the 
activation energies for enthalpy relaxation and for the correlation times of 
the motion which is frozen at Tg should be equal; this prediction is fulfilled 
for all cases for which sufficient data exist. 

It has also been shown that the symmetry departure parameter AE can be 
calculated from experimental data. 

At the moment, the model gives a good description of secondary or 
secondary-like glass transitions. It has to be extended to other cases. 
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Moreover, other characteristic properties of glasses (heat capacity or thermal 
expansion changes at Tg for instance) should be related to the model 
parameters. 
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